POSSIBLE INVOLVEMENT OF TRANSFORMING GROWTH FACTOR- β IN THE INHIBITION OF RAT PITUITARY TUMOR GROWTH BY ESTRADIOL

VÉRONIQUE ALBALADEJO,¹ FEÏ ZHOU-LI,¹ BRIGITTE NICOLAS,¹ MARIE-ODILE JOLY-PHARABOZ,¹ ODILE AVALLET,² MICHÈLE VIGIER² and JEAN ANDRÉ^{1*} ¹INSERM-U.329 and ²INSERM-U.307, Hôpital Debrousse, 69322 Lyon Cédex 05, France

(Received 7 May 1991)

Summary—We have shown that growth of F_4Z_2 cells and F_4Z_2 tumors was stimulated by estradiol, that of MtTF₄ and F₄P tumors was inhibited and that of F₄P cells remained insensitive. In the present work we explore the possible role of transforming growth factor- β (TGF- β) as a mediator of estradiol action in these pituitary tumors and cell lines. In vivo, estradiol treatment increased the concentration of TGF- β_1 mRNAs in tumors whose growth was inhibited by estradiol (MtTF₄ and F_4P) but not in tumors whose growth was stimulated (F₄Z₂). F₄Z₂ and F₄P cell lines also contained TGF- β_1 transcripts. These cells and tumors differed by two points: the level of TGF- β_1 transcript was higher in F_4Z_2 than in F_4P cells while the opposite situation was observed in vivo and the concentration of TGF- β_1 mRNA in cultured cells was insensitive to estradiol (1 or 100×10^{-9} M). Moreover, the secretion of TGF- β like activity assayed by two different methods was estradiol insensitive and the growth of both cell lines was dose-dependently inhibited by TGF- β_1 (ED₅₀:2 × 10⁻¹¹ M). Since estradiol increases TGF- β_1 mRNA in the tumors MtTF₄ and F₄P whose growth is inhibited by estradiol and that TGF- β_1 inhibits the proliferation of F₄P cells it is proposed as a working hypothesis that TGF- β_1 is one of the mediators of the inhibitory effect of estradiol in pituitary tumors. No data favor the hypothesis that estradiol stimulates pituitary tumor proliferation by decreasing TGF- β production.

INTRODUCTION

Members of the transforming growth factor- β (TGF- β) family control the proliferation of various types of cells. TGF- β_1 is the member of the family the most widely studied [1-3]. Both the *in vivo* and *in vitro* biologic effects of TGF- β are remarkably diverse. Depending on cell type and cell environment TGF- β_1 may stimulate or inhibit proliferation. However, TGF- β_1 is one of the most potent polypeptide growth inhibitors known for a variety of cell types including selected types of mesenchymal and the large majority of epithelial cells [4].

Estradiol is involved in the control of the proliferation of some epithelial cells including tumor cells of epithelial origin such as the human breast cancer cell line MCF-7 [5]. The effect of estradiol and antiestrogens were shown to be linked to the control of the production and/or secretion of some enzymes and growth factors [6, 7] in agreement with the autocrine-

We decided to check whether such a hypothesis might be extended to an experimental model that we had developed from the MtTF₄ pituitary tumor whose growth presented the outstanding peculiarity of being slowed down by 17β -estradiol [9]. This model included, in addition to the MtTF₄ tumor, the F₄Z₂ and F₄P cell lines established from it and the F₄Z₂ and F₄P tumors which were developed by injecting cells into syngenic rats. The estradiol sensitivity and estradiol receptor content of the tumors and

paracrine mechanisms of growth regulation. These cells were growth-inhibited by TGF- β_1 [8] and the amount of TGF- β_1 in conditioned medium (CM) was markedly increased by two antiestrogens which have a strong negative growth modulatory activity [5]. In contrast, growth stimulatory concentrations of 17β -estradiol depressed slightly the concentration of TGF- β in CM [5]. Thus, it was suggested that antiestrogens and 17β -estradiol exert their action on cell growth through the enhancement or the decrease of TGF- β secretion and activation.

^{*}To whom correspondence should be addressed.

Table 1. Some features of the experimental model

	Response of growth to estradiol	Estradiol binding sites	Response of TGF- β_1 transcripts to estradiol
MtTF ₄ tumors	Inhibition ^a	34 ± 11 fmol/mg cytosol protein	Stimulation
F_4Z_2 cells	Stimulation ^b	6700 ± 4000 binding sites/cell	Insensitivity
F_4Z_2 tumors	Stimulation ^a	74 ± 34 fmol/mg cytosol protein	Insensitivity
F _A P cells	Insensitivity ^{b,c}	ND	Insensitivity
F ₄ P tumors	Inhibition ^a	28-30 fmol/mg cytosol protein	Stimulation

^aIn animal studies; ^bin culture studies; and ^cF₄P cells after subculture No. 13. ND, not detected.

cells used are summarized in Table 1 [10, 11]. To determine whether TGF- β might be involved in the positive or the negative control of tumor growth, experiments were performed with tumors themselves and with cells from which the tumors grew. In tumors, we looked for estradiol-control of TGF- β_1 mRNA concentration. In cell culture: (i) we checked whether the effects observed *in vivo* on TGF- β_1 transcripts might be due to a direct action of estradiol-sensitive accumulation of TGF- β -like activity in CM and finally, (iii) we tested the TGF- β_1 sensitivity of cell growth.

MATERIALS AND METHODS

Estradiol and growth factors

 17β -Estradiol was from Vegetadrog (Paris, France) and Sigma (St Louis, MO, U.S.A.). For studies in cell culture, stock solutions were prepared in ethanol and stored at -20° C. TGF- β_1 of porcine platelet origin was from R and D systems (Minneapolis, MN, U.S.A.). Stock solutions were prepared in 4 mM HCl, 0.1% bovine serum albumin (Albumin FAF. Boehringer Mannheim, Fed. Rep. Germany) and stored at 4°C. EGF of mouse submaxillary gland origin was prepared in the laboratory according to Savage and Cohen [12]. Stock solution was prepared in 50 mM acetic acid and stored at -20° C.

Animals and tumors

Fischer 344 female rats were from our colony. MtTF₄ tumor was maintained by serial injections [9]. Other tumors (F_4Z_2 and F_4P) were obtained by injection of $\simeq 2 \times 10^6$ cells harvested from culture flasks by trypsin-EDTA treatment [10]. When tumors were palpable, 10–15 days after injection, rats were implanted s.c. with a silastic capsule (1 cm long, Ref. 602–265, Dow-Corning Corp., Midland, MI, U.S.A.) filled with 17 β -estradiol allowing a 17 β -estradiol concentration in blood of 1–10 \times 10⁻⁹ M [9]. Tumors were collected 4–16 days later. For shorter treatments (6–48 h) rats received daily i.m. 10 μ g estradiol in sesame oil. In all cases a group of control tumor-bearing rats did not receive any treatment and the tumors were collected on the same day as those of the test group.

Cell culture

 $F_{4}Z_{2}$ cells were routinely maintained in RPMI 1640 medium (Gibco, Paisley, Scotland) containing 5% fetal-calf serum (FCS). F₄P cells were maintained in the same type of medium in which the FCS had been previously treated for 45 min at 56°C with 0.1% dextran and 1% charcoal Norit A (CT-FCS). All media contained phenol red (8 mg/ml). Neither basal growth nor estradiol-sensitivity of the growth of these cells were modified by this dye. To study the effects on TGF- β_1 mRNA concentration, cells were seeded in RPMI 1640 medium supplemented with 5% CT-FCS and cultured for 5 days without estradiol or with 1×10^{-9} M (F₄Z₂ cells) or 100×10^{-9} M (F₄P cells) estradiol. To study the effects on TGF- β activity, cells were seeded as above. Three days later the medium was replaced by a serum-free RPMI 1640 medium supplemented with 2 mg/l transferrin (Sigma) and 2×10^{-4} M Hepes buffer pH 7.4 (Gibco) and the same concentrations of estradiol as those used at seeding time. Cells were cultured for 24 h, fed again with the same medium and CMs were collected 48 h later. Cells were counted with a Coulter counter. To analyze the effects of TGF- β_1 on cell yield, cells were seeded in RPMI 1640 medium containing 5% CT-FCS. TGF- β_1 was added every day and medium was changed one time. Cells were counted 7 days later with a Coulter counter.

RNA

Total RNAs were extracted from tumors and uterus immediately after collection and from cells immediately after harvesting with PBS containing 1 mM EDTA according to Chromczynski and Sacchi [13]. The A 260/A 280 ratios were ≥ 1.8 . RNA (20 μ g) was denatured

Fig. 1. Northern blots of TGF- β_1 (upper part) and glyceraldehyde-3-phosphate-dehydrogenase mRNAs (lower part) in tumors. Total RNAs were extracted from various tumors carried by control rats (C) and by rats treated for 8 days with an estradiol-implant (E). These RNAs ($20 \mu g$) were separated by electrophoresis, transferred onto a nylon membrane and were hybridized first to a single strand ³²P-labeled human TGF- β_1 probe (upper part), then to a ³²P-labeled glyceraldehyde-3-phosphate-dehydrogenase c-DNA probe (lower part). Arrows point to the position of 18 S rRNA. Similar results were obtained in series of 2-3 tumors grown from 3 different cell preparations for MtTF₄ and F₄P tumors and from 2 different cell preparations for F₄Z₂ tumors.

by heating (65°C for 5 min) just before electrophoresis on 1% agarose gel containing 10% formaldehyde. Thereafter, RNAs were transferred onto a nylon membrane (Hybond [™]-M Amersham). Prehybridization and hybridization were carried out according to Church and Gilbert [14] and Van Obberghen Schilling et al. [15]. Briefly, prehybridization was performed for 1 h at 65°C in a 0.5 M disodium phosphate buffer pH 7.4 containing 1% crystallized bovine serum albumin (Sigma A-7638), 7% sodium dodecyl-sulfate and 1 mM EDTA. Hybridization was carried out in the same buffer containing labeled probe $(5 \times 10^4 \text{ cpm/cm2})$ for 20 h at 65°C. The single strand ³²P-labeled probe was prepared from the recombinant M 13 phage containing a 243 bp Pvu II fragment of the 3' end of TGF- β_1 human cDNA non-coding strand. A specific 17-Mer oligonucleotide within the insert was used as a primer. Autoradiographs were obtained after 11–14 days exposure at -70° C to Kodak X-AR-K films with intensifying screens. Thereafter, filters were washed in water at 90°C and rehybridized with a rat glyceraldehyde-3-phosphate-dehydrogenase 1300 bp cDNA probe ³²P-labeled by random priming [16].

Processing of CMs

Immediately after their collection, CMs were combined with 1×10^{-3} M phenyl methyl sul-

fonyl fluoride (Sigma), cleared by centrifugation at $4^{\circ}C$ (600 g × 4 min) and concentrated 10-fold with an Amicon ultracentrifugation cell (YM2 Diaflo ultrafiltration membranes, Mw cut-off: 1000). Transient acidification with HCl (pH 2) was performed on one half of each sample according to the method of Lawrence et al. [17] slightly modified. The samples, treated or not with acid, were dialyzed three times for 8 h at 4°C against 50 vol of ultrapure water (MilliQ, Millipore) using tubings of M_w cut-off 3500 (Spectrapor R, PolyLabo, Strasbourg, France), freeze dried and stored at -20° C. It was checked that pH values at the end of the dialysis were in the same range (pH 7-8) in all samples. Non-CM was processed simultaneously for each experiment. Just before TGF- β activity assay, PBS was added to achieve a 100-fold concentration.

Anchorage-independent growth assay

In 24-well tissue culture plates (Falcon), 3 layers were successively added: (1) 0.5 ml DMEM containing 0.8% agar (Difco, Detroit, MI, U.S.A.) and 10% FCS; (2) 0.25 ml DMEM containing 0.5% agar, 10% FCS and the indicator cells (2000 NRK-49F cells); and (3) 0.2 ml DMEM containing 10% FCS, 4 ng/ml EGF and one of the following: buffer, increasing amounts of TGF- β_1 , increasing volumes of $100 \times \text{concentrated CM}$ or increasing volumes of 100 × concentrated non-CM. Plates were incubated for 11-13 days in a 5% CO₂ atmosphere at 37°C. Colonies were observed by phase contrast microscopy, their number and their size were determined with a Quantimet 900 image analyzer (Cambridge Instruments Ltd, Monsey, NY, U.S.A.). The range of the areas of colonies scored was $9 \times 10^{-4} - 180 \times 10^{-4} \text{ mm}^2$.

Cortisol production assays

Ovine adrenocortical cells were isolated from adrenal cortex by a sequential treatment with 0.25% trypsin in Dulbecco's modified Eagle's medium (DMEM-Ham's F-12 medium, v/v [18]. The cells were washed and cultured for 24 h in the same medium supplemented with 1% horse serum. The next day, medium was replaced by DMEM-Ham's F-12 without serum. Treatments with TGF- β_1 or CM were initiated the next day in serum-free medium for 24 h. Finally, following stimulation of cells for 1 h with ACTH (1 × 10⁻⁹ M), medium content of cortisol was measured by a specific radioimmunoassay [18].

Fig. 2. Northern blots of TGF- β_1 (upper part) and glyceraldehyde-3-phosphate-dehydrogenase mRNAs in cells. Total RNAs were extracted from various control cells (C) and from cells treated with estradiol (E) for 5 days. F₄Z₂ cells were treated with 1×10^{-9} M and F₄P with 100 × 10⁻⁹ M estradiol. RNAs (20 μ g) were analyzed as described in Fig. 1. Arrows point to the positions of 28 and 18S rRNAs. Similar results were found in 6 experiments with F₄Z₂ cells (passages 37 to 44) and 5 experiments with F₄P cells (passages 34 to 39).

RESULTS

$TGF-\beta_1$ mRNAs in tumors

The three types of tumors analyzed, those whose growth was inhibited by estradiol (F_4P) and $MtTF_4$) and those stimulated by estradiol (F_4Z_2) contained the classical 2.5 kb TGF- β_1 mRNA (Fig. 1). In addition, a less abundant 1.8 kb transcript was observed. After estradiol treatment for 8 days (Fig. 1) or 2, 4 or 16 days (not shown) the concentrations of 2.5 and 1.8 kb transcripts increased in tumors whose growth was inhibited by estradiol (compare lanes 1 and 2, 3 and 4) and were unchanged in tumors whose growth was stimulated by estradiol (compare lanes 5 and 6). The increase, estimated from the absorbance ratio of the 2.5 kb bands varied between 1.5 to 3-fold. No modification was observed in any type of tumor for shorter treatments (6-24 h).

A technical point has to be mentioned. TGF- β_1 transcripts were revealed by hybridization with a ³²P-labeled single-strand probe complementary to the coding strand of a 243 bp Pvu II fragment of the 3' end of TGF- β_1 human cDNA. Such a probe was chosen, although it was time consuming to prepare it because we found an unexpected cross hybridization in using a probe labeled by random priming. This

probe prepared from the 1050 bp TGF- β_1 cDNA fragment of human λ - β C1 clone [19] revealed 18 and 28 S RNAs in addition to the TGF- β_1 transcripts. High stringency did not allow us to remove the cross hybridization.

The concentration of transcripts of the house keeping glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was insensitive to estradiol (Fig. 1 lower part).

$TGF-\beta_1$ mRNAs in cultured cells

TGF- β_1 mRNAs were looked for in cultured cells from which tumors grew. In basal conditions both F_4P and F_4Z_2 cells contained the same transcripts as tumors (Fig. 2). However, the concentration of the classical 2.5 kb transcript was higher (1.5- to 10-fold according to the experiment) in F_4Z_2 than in the F_4P cells. In addition, the ratios of 2.5 to 1.8 kb transcripts determined from absorbance measurements were also higher (2- to 24-fold) in F_4Z_2 than in F_4P cells. Faint but constant signals for 2.5 and 1.8 kb transcripts were observed in all the experiments realized with F_4P cells. A common feature to both cell lines was that the concentrations of their TGF- β_1 related transcripts were insensitive to estradiol treatment for 5 days (Fig. 2) or 2 days (not shown). Estradiol concentrations used were those known to be optimal for stimulating the growth of F_4Z_2 cells $(1 \times 10^{-9} \text{ M})$ and inhibiting the growth of $F_4 P$ cells $(1 \times 10^{-7} \text{ M})$ before their growth became estradiol-insensitive [10]. We found 2.5 kb, but no 1.8 kb transcripts in MCF-7 and MB MDA 231 cell lines (not shown) suggesting that the 1.8 kb transcripts of other cells and tumors processed simultaneously might not be experimental artifacts.

$TGF-\beta$ activity in CM

Due to the high background we observed in TGF- β assays using receptors carried by NRK-49 F cells or prostate cellular membranes we estimated TGF- β by two different bioassays. First, the stimulation of the anchorage-independent colony formation by NRK cells was used (Fig. 3). The transiently acidified CMs were used in order to measure the totality of TGF- β activity: the spontaneously active and the latent forms. CM of F₄P [Fig. 3(E)] and of F₄Z₂ cells [Fig. 3(F)] increased the number and the areas of colonies but that of F₄Z₂ was much more active (note, in the legend of Fig. 3, the volume of the samples and the number of cells which conditioned the medium). These effects were

Fig. 3. Evidence for TGF- β like activity in CMs of F_4Z_2 and F_4P cells (stimulation of an anchorageindependent growth). NRK-49 F cells were cultured for 11 days in the presence of EGF (4 ng/ml) and with or without test products. Colonies were examined by phase contrast microscopy. (A) No test product. (B) TGF- β_1 1 ng. (C) TGF- β_1 2 ng. (D) 50 μ l of 100-fold-concentrated medium not incubated with cells. (E) 20 μ l of 100-fold-concentrated CM of 41 d F₄P cells (1 ml of medium was conditioned for 48 h by 16 × 10⁵ cells counted at the harvesting time). (F) 5 μ l of 100-fold-concentrated CM of 43 d F₄Z₂ cells (1 ml of medium was conditioned for 48 h by 7 × 10⁵ cells counted at the harvesting time).

much more marked than with non-CM [Fig. 3(D)] and were in the range of those of TGF- β_1 [1 and 2 ng, Fig. 3 (B and C)]. Quantification by this method was found to be hazardous because the parallelism of the data from CM and the calibration curve (0.025-2 ng) was poorly documented. Rough estimations from two experiments were in the ranges 0.3-0.4 and 1.5–14 ng/10⁶ cells/48 h for F_4P and F_4Z_2 cells, respectively confirming that F_4Z_2 cells were better producers than F_4P cells. Due to the large variations observed after addition of CM in soft agar we were unable to specify whether estradiol-treatment with 1×10^{-9} M for 5 days actually modified the TGF- β activity in F₄Z₂ CM (not shown). Thus, to look for possible limited estradiol effects which could not be seen in this essay and also to seek estradiol effects on F_4P cells we turned to another bioassay. This assay was supposed to be more discriminant because the end point was the result of a limited number of modifications including the inhibition of one enzyme activity involved in the control of cortisol production [18] and not the consequence of a cascade of numerous events leading to cell division. TGF- β_1 decreased in a dose-dependent manner the cortisol production by ovine adrenocortical cells [Fig. 4(A)]. TGF- β_1 activity was estimated in CMs which were either not acidified or transiently acidified [Fig. 4(B)]. Without acidification, the TGF- β like activity was in the range of 2–5 ng/ 10⁶ cells/48 h in F₄Z₂ CM and at the limit of detection, 0.001–0.004 ng/10⁶ cells/48 h, in F₄P CM. After acidification, the activity was found in the CMs of both cell lines but the F₄Z₂ cells were still higher producers than F₄P cells (2–7 vs 0.1–0.2 ng/10⁶ cells/48 h). Whatever the conditions of assay, 5-day treatments with estradiol (1 × 10⁻⁹ M for F₄Z₂ or 100 × 10⁻⁹ M for F₄P cells) did not significantly modify the TGF- β activity in CM, transiently acidified or not [Fig. 5(B and D)].

Effects of TGF- β_1 on F_4Z_2 and F_4P cell proliferation

When F_4Z_2 and F_4P cells were cultured in the presence of 5% CT-FCS and increasing concentrations of TGF- β_1 the cell yield 7 days after seeding decreased in a dose-dependent manner (Fig. 6) The ED₅₀ was approx. 2×10^{-11} M both for F_4Z_2 and F_4P cells.

DISCUSSION

It is not surprising that the tissues and cell lines examined in this work contained TGF- β_1 transcripts nor that the two cell lines examined

Fig. 4. Comparison of basal TGF- β activities in CMs of F_4Z_2 and F_4P cells (inhibition of cortisol production). Ovine adrenocortical cells were incubated in the presence of increasing concentrations of TGF- β_1 (A) or increasing volumes of 100-fold-concentrated CMs of 35 d F_4Z_2 cells (\triangle , \triangle) or 17 d F_4P cells (\bigcirc , \bigcirc) (B). The cortisol accumulated in the medium after ACTH stimulation was measured in triplicate in 3 different wells. Results are means \pm SD of a typical experiment of 4 carried out with F_4Z_2 cells and 2 with F_4P cells. The CMs were (\bigcirc , \triangle) or were not (\bigcirc , \triangle) transiently acidified before they were concentrated. When CMs were collected, $8 \times 10^5 F_4Z_2$ cells and $15 \times 10^5 F_4P$ cells were recovered per ml of medium. The values (means \pm SD) obtained with the culture medium not incubated with cells are located in the punctated area.

produced TGF- β like activity and had their growth inhibited by TGF- β_1 . Indeed, the large majority of normal or tumor cells examined today contain, secrete or are sensitive to TGF- β_1 [19]. Before discussing the possible role of TGF- β in estradiol control of cell and tumor growth several features of our experimental model have to be mentioned.

 F_4Z_2 and F_4P cells which were established from the same tumor display several other dissimilarities other than the difference of growth-sensitivity to estradiol. F_4Z_2 cells are better TGF- β producers and contain more TGF- β_1 transcripts than F_4P cells (this paper). F_4Z_2 cells secrete immunoreactive IGF-1 $(50-200 \text{ ng}/10^6 \text{ cells}/5 \text{ days})$ while F_4P cells do not (unpublished). F_4P cells secrete PRL while F_4Z_2 do not [10] and only F_4P cells contained PRL transcripts (submitted for publication). In addition to the classical 2.5 kb TGF- β_1 transcript, a 1.8 kb transcript was revealed in all cells and tissues analyzed with a single-strand TGF- β_1 probe. Such mRNAs have already been found by others in Burkitt lymphoma B lymphoblasts Radji, in stimulated normal peripheral lymphocytes and hepatoma Hep G₂ cell line [1], in liver during regeneration after hepatectomy [20], in rat and bovine normal tissues including calvaria, diaphysis, ameloblast, bone cells [21], in the rat intestinal cell

lines IEC-6 [22] and chicken embryo-chondrocytes [23]. The significance of this short transcript is not clear: cross hybridization with other members of the TGF- β family, e.g. TGF- β_4 as shown in chick embryo-chondrocytes [23], or products of alternative splicing, or products of a limited degradation of TGF- β_1 transcript. The fact that the concentrations of 1.8 kb transcript varied in parallel to 2.5 kb transcript after *in* vivo estradiol treatment (this paper) and after partial hepatectomy [20] do not favor the cross hybridization hypothesis.

The estradiol control of TGF- β_1 transcripts depended on the nature of cells and/or cell environment (Table 1). Indeed, in vivo, estradiol increased their concentrations in the tumors MtTF₄ and F₄P whose growth was inhibited by estradiol but not in the tumors F_4Z_2 whose growth was stimulated by estradiol. In cell culture, estradiol did not control TGF- β_1 transcripts neither in the F_4Z_2 cells nor in F_4P cells from which tumors grew. Two hypotheses may explain why estradiol enhanced TGF- β_1 transcripts in F_4P tumors but not in F_4P cells in culture. (1) Estradiol could increase TGF- β_1 transcripts in normal cells originating from surrounding tissues when tumors invaded them. However, a direct action of estradiol on these cells is unlikely since the same cells should be found in F_4Z_2 tumors whose TGF- β_1 transcripts

Fig. 5. TGF- β activity in CMs of cells treated or not with estradiol (inhibition of cortisol production). Ovine adrenocortical cells were incubated in the presence of increasing concentrations of TGF- β_1 (A, C) or increasing volumes of 100-fold-concentrated CM of 29 d F₄Z₂ (B) and 24 d F₄P (D) cells. CMs were acidified (+ACID) or not (-ACID) before they were concentrated. A-B and C-D show the results obtained with two different preparations of ovine adrenocortical cells. The cortisol accumulated in the medium after ACTH stimulation was measured in triplicate in 3 different wells. Results are means \pm SD of a typical experiment. (B) F₄Z₂ cells were cultured in the absence (---) or in the presence (----) of estradiol (1 × 10⁻⁹ M). When CMs were collected, 6.4 × 10⁵ cells were recovered per ml of medium both in the control and estradiol-treated flasks. (D) F₄P cells were cultured in the absence (---) or in the presence (----) of estradiol (1 × 10⁻⁷ M). When CMs were collected, 11 × 10⁵ cells per ml of medium were recovered both in the control and estradiol-treated flasks. Similar results were obtained in three other experiments with F₄Z₂ cells and one other with F₄P cells.

were estradiol-insentitive. The role of cell population changes in the variation of TGF- β mRNA concentration in a tissue has already been reported. The TGF- β_1 mRNAs increase during liver generation has been attributed mainly to an increase of the non-parenchymal endothelial cells [20]. This hypothesis appears to us improbable in the F₄P and MTtF₄ tumors because their stroma is less developed [24] than in liver where it might account for 30–35% of the total liver cell population. (2) Thus, we favor the hypothesis that estradiol enhances $TGF-\beta_1$ mRNAs in tumor cells. We cannot specify whether this action is direct or indirect via endocrine or paracrine factors. The fact that the estradiol-insensitive F_4P cell line, from which the estradiol-inhibited F_4P tumor was obtained, did not contain estrogen receptor ([10] and unpublished results) does not rule out the direct hypothesis. Indeed, F_4P tumors contained estrogen receptors [10]. It is conceivable that F_4P cells recovered estrogen receptors when they

Fig. 6. Inhibition of F_4Z_2 and F_4P cell proliferation by TGF- β_1 . Cells (10⁴/cm²) were seeded in RPMI 1640 medium supplemented with 5% CT-FCS in the presence of increasing concentrations of TGF- β_1 . Cells were counted in triplicate 7 days later and results are expressed as means \pm SD of a typical experiment on 3 realized with F_4Z_2 or F_4P cells.

grew in vivo. As far as the estradiol-regulation of the concentration of TGF- β_i transcripts is concerned there is no discrepancy between F_4Z_2 cells and F_4Z_2 tumors. Indeed, both cells and tumors contained estrogen receptors [10] and their TGF- β_1 transcripts were insensitive to estradiol. The reason for such an insensitivity in cells whose growth was estradiol-responsive was not explored. This observation, taken with those of others, does not point to any simple correlation between the hormonal control of TGF- β_1 gene expression and cell growth. Indeed, the TGF- β_1 transcripts were reported: (i) to be insensitive both to the growth stimulator estradiol and to the growth inhibitory antiestrogens in MCF-7 cells [5]; (ii) to be slightly decreased by the growth stimulator dihydrotestosterone in the normal human osteoblastic cell line [25]; and (iii) to be markedly reduced by the growth inhibitor medroxy-progesterone acetate in the human breast tumor cells, T47D [26]. However, in human osteoblast-like osteosarcoma cells HOS TE 85, the estradiol responsiveness of which was not specified, estradiol increased the 2.5 kb transcript [27].

The accumulation of TGF- β like activity, including possibly TGF- β_1 , TGF- β_2 and TGF- β_3 , in CMs of F_4Z_2 and F_4P cells was not significantly modified by estradiol treatment. Such a result was expected for estrogen-receptor negative F_4P cells. That obtained with F_4Z_2 cells differs from those of Knabbe *et al.* [5] in MCF-7 cells whose growth was stimulated by estradiol and inhibited by the two antiestrogens 4-OHtamoxifen and LY 117 018:estradiol was reported to decrease and antiestrogens to increase the production of TGF- β_1 at the post-transcriptional level in MCF-7 cells. It may be argued that the bioassays we used were not sensitive enough to detect small variations of TGF- β activity in F₄Z₂ CM. However, a 3-4-fold variation, like that reported in MCF-7 cells, should have been detected with our assays. Indeed, an increase of 20% TGF- β_1 activity was found after acid activation of F_4Z_2 CM. Thus, if estradiol has any effect on TGF- β production in $F_4 Z_2$ it should be limited. Another difference has to be pointed out between TGF- β secretion by F_4Z_2 and MCF-7 cells: the latent TGF- β activity represents the large majority ($\simeq 95\%$) of the total TGF- β activity in MCF-7 cell secretions [5] as in numerous cell lines [17, 28, 29] while it accounts for $\simeq 20\%$ only of the F₄Z₂ cell secretion. The proportion of the TGF- β activity in a latent form in F_4P cell secretion is similar to that of MCF-7 cells. Thus, there is no evident correlation between the growth sensitivity of cells to estradiol and the ratio of the spontaneous to the latent form of TGF- β activity.

The sensitivity of the anchorage-dependent growth of F_4Z_2 and F_4P cells to TGF- β_1 (ED₅₀: 2 × 10⁻¹¹ M) is slightly lower than that of the anchorage-independent growth of NRK cells [2-4 × 10⁻¹² M, 8] and is in line with the K_d of TGF- β_1 for their receptors, e.g. on GH₃ cells [30]. Thus, F_4Z_2 and F_4P cells are potential targets for TGF- β_1 in vivo.

In conclusion, we have shown that estradiol controls the level of $TGF-\beta_1$ transcripts in pituitary tumors whose growth is inhibited by estradiol but not in tumors whose growth is stimulated nor in cell lines from which these tumors grew. In this model, it is not obvious that $TGF-\beta$ is one of the autocrine-paracrine factors involved in the estradiol control of tumor or cell growth. However, since estradiol increases $TGF-\beta_1$ transcripts in tumors whose growth is inhibited by estradiol and that $TGF-\beta_1$ inhibits the cell proliferation, it is reasonable to propose, as a working hypothesis, that estradiol inhibits tumor growth by increasing the local concentration of $TGF-\beta$. No data favor the hypothesis that estradiol stimulates pituitary tumor growth by decreasing $TGF-\beta$ production. The fact that the basal level of $TGF-\beta_1$ transcript and its control by estradiol differs in tumors and cells suggests that factors other than estradiol are involved. In the present experimental set up these factors were not investigated.

Acknowledgements—This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Facultés de Médecine Lyon Nord and Alexis Carrel, the Département de Biologie Humaine and the Association pour le Développement de la Recherche sur le Cancer. Thanks are due to A. Roberts for help at the beginning of TGF- β_1 mRNA analysis, to P. Kondaiah for providing recombinant TGF- β_1 M13, to J. M. Blanchard for providing the recombinant plasmid glyceraldehyde-3-phosphate-dehydrogenase, to Dr A. Lawrence for sharing his experience on soft agar assay and providing NRK 49F cells, to C. Souchier (Centre Commun de Quantimétrie, Lyon) for her help in morphological examinations of soft-agar tests, to M. Montagnon for typing and J. Carew for correcting this manuscript.

REFERENCES

- Derynck R., Jarrett J. A., Chen E. Y., Eaton D. H., Bell J. R., Assoian R. K., Roberts A. B., Sporn M. B. and Goeddel D. V.: Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. *Nature* 316 (1985) 701-705.
- Sporn M. B., Roberts A. B., Wakefield L. M. and De Crombrugghe B: Some recent advances in the chemistry and biology of transforming growth factor-bêta. J. Cell Biol. 105 (1987) 1039-1045.
- Moses H. L., Yang E. Y. and Pietenpol J. A.: TGF-β stimulation and inhibition of cell proliferation:new mechanistic insights. *Cell* 63 (1990) 245-247.
- Barnard J. A., Lyons R. M. and Moses H. L.: The cell biology of transforming growth factor β. Biochim. Biophys. Acta 1032 (1990) 79-87.
- 5. Knabbe C., Lippman M. E., Wakefield L. M., Flanders K. C., Kasid A., Derynck R. and Dickson R. B.: Evidence that transforming growth factor- β is a hormonally regulated negative growth factor in human breast cancer cells. *Cell* **48** (1987) 417-428.
- Vignon F., Capony F., Chambon M., Freiss G., Garcia M. and Rochefort H.: Autocrine growth stimulation of the MCF-7 breast cancer cells by the estrogen-regulated 52 K protein. *Endocrinology* 118 (1986) 1537-1545.
- Dickson R. E. and Lippaman M. E.: Estrogenic regulation of growth and polypeptide growth factor secretion in human breast cancer carcinoma. *Endocrine Rev.* 8 (1987) 23-43.
- 8. Roberts A. B., Anzano M. A., Wakefield L. M., Roche N. S., Stem D. F. and Sporn M. P.: Type β transforming growth factor: a bifunctional regulator of cellular growth. *Proc. Natn. Acad. Sci.*, U.S.A. 82 (1988) 119-123.
- 9. Morel Y., Albaladejo V., Bouvier J. and André J.: Inhibition by 17β -estradiol of the growth of the rat

pituitary transplantable tumor MtTF₄. Cancer Res. 42 (1982) 1492-1497.

- Joly-Pharaboz M. O., Zhou-Li F., Bouillard B. and André J.: Stimulation and inhibition by estradiol of cell growth in new estrogen-sensitive cell lines established from the MtTF4 tumor. *Cancer Res.* 50 (1990) 3786-3794.
- Bouillard B., Albaladéjo V., Joly-Pharaboz M. O., Morel Y. and André J.: Size heterogeneity of affinity labeled estrogen receptors in the MtTF₄ tumor whose growth is inhibited by estradiol in pituitary gland and uterus. J. Steroid Biochem. 33 (1989) 45-52.
- Savage C. R. Jr and Cohen S.: Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J. Biol. Chem. 247 (1972) 7609-7611.
- Chomczynski P. and Sacchi N.: Single-step method of RNA isolation by acid guanidium thiocyanate-phenolchloroform extraction. *Analyt. Biochem.* 162 (1987) 156-159.
- Church G. M. and Gilbert W.: Genomic sequencing. Proc. Natn. Acad. Sci., U.S.A. 81 (1984) 1991–1995.
- Van Obberghen-Schilling E., Kondaiah P., Ludwig R. L., Sporn M. B. and Baker C. C.: Complementary deoxyribonucleic acid cloning of bovine transforming growth factor-β₁. *Molec. Endocr.* 1 (1987) 693-698.
- 16. Fort Ph., Marty L., Piechaczyk M., El Sabrouty S., Dani Ch. Jeanteur Ph. and Blanchard J. M.: Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. *Nucleic Acids Res.* 13 (1985) 1431-1442.
- Lawrence D. A., Pircher R., Kryceve-Martinerie C. and Jullien P.: Normal embryo fibroblasts release transforming growth factors in a latent form. J. Cell. Physiol. 121 (1984) 184–188.
- Rainey W. E., Viard I. and Saez J. M.: Transforming growth factor-β treatment decreases ACTH receptors on ovine adrenocortical cells. J. Biol. Chem. 264 (1989) 21474-21477.
- 19. Derynck R., Goeddel D. V., Ullrich A., Gutterman J. U., Williams R. D., Bringman T. S. and Berger W. H.: Synthesis of messenger RNAs for transforming growth factors α and β and the epidermal growth factor receptor by human tumors. *Cancer Res.* 47 (1987) 707-712.
- 20. Braun L., Mead J. E., Panzica M., Mikumo R., Bell G. I. and Fausto N.: Transforming growth factor β mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation. *Proc. Natn. Acad. Sci.*, U.S.A. 85 (1988) 1539–1543.
- 21. Gehron Robey P. G., Young M. F., Flanders K. C., Roche N. S., Kondaiah P., Reddi A. H., Termine J. D., Sporn M. B. and Roberts A. B.: Osteoblasts synthesize and respond to transforming growth factor-type β (TGF- β) in vitro. J. Cell Biol. 105 (1987) 457-463.
- 22. Koyama S.-Y. and Podolsky D. K.: Differential expression of transforming growth factors α and β in rat intestinal epithelial cells. J. Clin. Invest. 83 (1989) 1768-1773.
- 23. Jakowlew S. B., Dillard P. J., Sporn M. B. and Roberts A. B.: Complementary deoxyribonucleic acid cloning of a messenger ribonucleic acid encoding transforming growth factor β 4 from chicken embryo chondrocytes. *Molec. Endocr.* 2 (1988) 1186–1195.
- 24. Trouillas J., Morel Y., Pharaboz M. O., Cordier G., Girod C. and André J.: Morphofunctional modifications associated with the inhibition by estradiol of MtTF₄ rat pituitary tumor growth. *Cancer Res.* 44 (1984) 4046-4052.

- 25. Kasperk C., Fitzsimmons R., Strong D., Mohan S., Jennings J., Wergedal J. and Baylink D.: Studies of the mechanism by which androgens enhance mitogenesis and differentiation in bone cells. J. Clin. Endocr. Metab. 71 (1990) 1322-1329.
- 26. Murphy L. C. and Dotzlaw H.: Regulation of transforming growth factor α and transforming growth factor β messenger ribonucleic acid abundance in T-47D, human breast cancer cells. Molec. Endocr. 3 (1989) 611-617.
- 27. Komm B. S., Terpening C. M., Benz D. J., Graeme K. A., Gallegos A., Korc M., Greene G. L., O'Malley B. W. and Haussler M. R.: Estrogen binding, receptor

mRNA, and biologic response in osteoblast-like osteo-

- sarcoma cells. Science 241 (1988) 81-86. 28. Coffey R. J. Jr, Shipley G. D. and Moses H. L.: Production of transforming growth factors by human colon cancer lines. Cancer Res. 46 (1986) 1164-1169.
- Gelb D. E., Rosier R. N. and Puzas J. E.: The pro-duction of transforming growth factor-β by chick growth plate chondrocytes in short term monolayer culture. Endocrinology 127 (1990) 1941-1947.
- 30. Cheifetz S., Ling N., Guillemin R. and Massague J.: A surface component on GH₃ pituitary cells that recognizes transforming growth factor- β , activin, and inhibin. J. Biol. Chem. 263 (1988) 17225-17228.